
International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 528
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Detecting the correct design pattern for
enhanced maintainability - MPT

Ashutosh kumar Srivastava
MCA, University of Allahabad

Abstract— The effect of design patterns on the software maintainability is governed by different factors such as pattern size, prior
expertise of the developer with pattern and the most important quality attributes that must achieved by pattern , and before all of these is
fitting the pattern to a certain design problem . In the authors have created a decision support tool that helps the developer to choose
between three of GoF design patterns and equivalent alternative design solutions, it calculates metrics scores of each solution based on
the system size, then it presents where a design solution is getting better than another with respect to several quality attributes.

This research study solely emhasizes on which design pattern is useful to improve the maintainability of the software on the basis of the
Metrics as measurement of maintainability and we will be carrying out our research on this ground.

Index Terms— Design patterns, Maintainbility, Gang of Four, Maintainbility Predictors, Architectural Patterns, Idioms Pattern, Software
Metrices.

—————————— ——————————

1 INTRODUCTION
HE design pattern is a general reusable solution to a
commonly occurring problem in software design. It can be
defined as a description or template for how to solve a

problem that can be used in many different situations .

 There are three main types of design patterns that are ar-

chitectural patterns, Gang of Four (GoF) design patterns and
idiom patterns.The archirectural pattern constitutes of the
whole system where the modules are taken as a single unit
and the entities interact through the object oriented para-
digm.the GoF pattern published a book name Design Pat-
terns - Elements of Reusable Object-Oriented Soft-
ware according to which the patterns are divided as follow-
ing way- Creational pattern which states for the way of crea-
tion of object while hiding the creation logic from the client.
Another one is the Structural pattern in which the concern is
with the object and class creation via inheritance and interfac-
es, and the last one is the Behavioural pattern which deals
with the communication between the objects, another ones is
the J2EE patterns which are exclusively concerned with the
presentation tier. The last is the idiom patterns which is solely
dedicated to the coding phase. Each architectural pattern can
be cited as a design pattern but not every design pattern can
be termed as a architectutal pattern.
These design patterns tends to ease the developers the
ways to handle each and every module in a similar
manner so no need to think of a newer ways to handle
any module.

 In this paper we have attempt to evaluate the effect
of GoF design patterns on software maintainability to
draw safe conclusion about this issue. We have pro-
posed a tool to investigate which of design provide
easier maintainability under considering the most
common factor which is the system size. This tool
helps the experienced and even the inexperienced de-

signer for choosing the more maintainable pattern because
it is supplied by a repository of patterns.

2 RELATED WORK
The study of design pattern has been subjected to

empirical evaluation. Many research has been carried out
to predict the ways which can detect the correct design
pattern which can actually enhance the maintainability of
codes but no reaseach has been judged as that much
successful in order to be called substantial work for the
same. Surveys has been carried out, naïve programmers
were hired to detect the performance of these design
patterns on certain piece of codes. In some case, some of the
patterns were proving fruitful to the case whereas in some
case, the another one gave better result and it’s an
undeniable truth about the design patterns that no design
pattern can actually be called out as a supreme pattern to
be employed in each and every case.
 Its quite impossible also to find out a tool which can
actually check the performance of the architectutral
patterns on codes as different scenarios are there in the
wordly problems and each one of them needs to be
handled differently, so most of the work was restricted to
only Gang of Four pattern and that’s too only Behavioural
pattern. The one considerable research has ben carried out
by the Prechelt et al.

 They conducted an experiment called PatMain by
comparing the maintainability of two implementations of
an application, one using a design pattern and the other
using a simpler alternative. They used four different sub-
ject systems in same programming language. They ad-
dressed five patterns: Decorator, Composite, Abstract Fac-
tory, Observer and Visitor. The researchers measured the
time and correctness of the given maintenance tasks for

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 529
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

professional participants. They found that it was useful to
use a design pattern but in case where simple solution is
preferred, it is good to follow the software engineer com-
mon sense about whether to use a pattern or not, and in
case of uncertainty, it is better to use a pattern as a default
approach. A thorough understanding of specific design
patterns is often helpful for program maintenance.

Juristo and vegas conducted yet another experiment in repli-
cation to the Patmain experiment in which they considered the
decorator patterns, the abstract factory pattern and composite
pattern and they took 8 programming students and made
them to apply them on certain piece of codes and the time was
only the variables on which the study was based and the re-
sult came out was absolutely inconsistent with respect to the
original study and experiment. They found that system design
pattern was less maintainable.

Naanthaamorn phong and caver also replicated the Patmain
experiement and they included the visitor pattern, decorator
pattern, observer pattern and composite pattern to carry out
the same research and they took 10 engineering students to
apply them on certain piece of codes. The result of the study
was different from those of the original study. They found the
design patterns were not able to enhance the maintainability
and the understandability of the codes.

Krein et al performed the replication of the Patmain experi-
ment and they included two systems with different languages
and they applied composite pattern, visitor patern and the
abstract factory pattern on certain piece of codes, they found
that on modifying certain things on a versions, design pattern
based codes were found at errors as compared to the system
with non design patterns based codes.

Hedgedus et al performed the experiment and evaluated the
impact of design patterns on maintainability directly by
conducting an empirical analysis. They analyzed more than
300 revisions of the JHotDraw software system which relies
heavily on some design patterns. They calculated the main-
tainability values with their probabilistic quality model and
mined the design pattern instances parsing the comments
in the source code. They calculated the maintainability val-
ues with their probabilistic quality model and mined the
design pattern instances parsing the comments in the
source code. They found that there is a strong relation be-
tween the rate of design patterns in the source code and the
maintainability. Therefore using design patterns improve
the code maintainability.

Zhang and budgen conducted a review of the literatures
that were given by many eminent persons on the empirical
study of the knowledge of the Gang Of Four patterns and
they went through it thouroughly. They facilitated their
analysis on the basis of some experience reports that stated
about the design patterns and their applications using
some less rigorous observational forms. They found the
grounds on which they can lay this statement that design
patterns have some effect on the maintainability of codes

but they cant found any solid base of their selection as for
which design pattern is able to increase the maintainability
of the codes more than other patterns.

Ali and Elish performed the literature survey and they in-
cluded in their study the impact of the Gang of Four design
patterns on four different attributes that were maintaina-
blility, evaluation, performance and faultproneness. The
results show that in general, the impact of design patterns
on maintainability, evolution and change proneness is neg-
ative. For performance, the number of studies that ad-
dressed performance and the number of covered patterns
make it difficult to draw a conclusion. Finally for fault-
proneness, the results are different from one study to the
other, thus it is difficult to make a decision regarding their
impact.

Hsueh carried out an analytical assessment to help the pro-
grammers to study and inspect the correctness of these de-
sign patterns and their efficiency. They also proposed two
different measures: Occasion and effectiveness analysis to
study some well known open source systems. They defined
their context and their anticipated changes and then
checked whether they held up to the expectations. Their
conclusion was that although design patterns can be mis-
used their effectiveness is maintained and they prove to be
useful at early or later stages of maintenance.

Ampatzoglou et al conducted study to propose a theoreti-
cal methodology by comparing three design patterns with
two alternative solutions, with respect to several quality
attributes, through the mathematical formulation and well
known metrics. They investigated designs by studying the
literature, open-source projects and by using design pat-
terns. They have created decision support tool that aids the
developer to choose the appropriate design pattern. The
input of the tool is the pattern under consideration, the es-
timated system size and the goals of the design team with
respect to quality attributes. The tool simulates all the steps
of the proposed methodology. The results show that the
decision of applying a design pattern is usually a trade-off
because patterns are not universally good or bad, but it
should be preferred for systems that are intended to be
heavily reused and/or maintained. Furthermore, two addi-
tional factors have been highlighted: pattern size and de-
velopers‟ prior experience with pattern.

Nadia et al conducted one study that created a tool which
provide some guidelines and some recommendation rules
that can help programmers decide whether the intention
imposed for the design patern is acheived or not. The tool
allows the designer to draw a design fragment, present the
problem then re-phrases the problem in order to obtain the
intention of a certain pattern. Then, it explores the candi-
date solutions by filtering patterns that meet the intentions
through the use of recommendation rules.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 530
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3 PROBLEM STATEMENT
 Which design pattern is more maintainable with respect to
another in a given problem statement and under what condi-
tions?

4 PROPOSED SOLUTION
 Until now there is no study or the research has been done
in order to carry out the check on the maintainability predic-
tion of the design patterns as which of them has stronger ef-
fects on it and which of them weakens the maintainability. It is
firmly said above that no tool can actually classify whole of
the patterns and detect the efficiency of these on a given set of
problems, codes and statements but from the GoF patterns one
can predict the working of some of the design patterns on a
given set of codes and scenarios. The effect of these patterns
can be judged on many of the factors such as system size, the
prior information of the ines of codes and the imposed pattern
but there are certain set of maintainability predictors on the
basis of which the prediction becomes quite easy with respect
to many different other factors that are there.

Ampatzoglou[4] have created a decision support tool that
helps the developer to choose between three of GoF design
patterns and equivalent alternative design solutions, it cal-
culates metrics scores of each solution based on the system
size, then it presents where a design solution is getting bet-
ter than another with respect to several quality attributes.
This paper have proposed a new version of this tool that
aims to compare the maintainability of GoF design patterns
with each other based on the maintainability predictors.

The design patterns that are considered for this maintaina-
bility predictor tools are Gang of four patterns. The inputs
of the tool will be the particiapating classes, and on modi-
fying the interfaces participating or introducing the new or
naïve client, the no. of participating classes is the most
common parameters taken to study the maintainablilty of
the codes. The major axis on which the tool will be studied
is the no.of refined abstract classes, no.of concrete imple-
menter classes, no.of new clients and the new methods and
attributes that were introduces for the chosen pattern. In
earlier studies mainly two of the given axis were chosen as
no.of concrete implementer classes and no.of refined ab-
stract classes and the tool was given to study the maintain-
ability on the basis of some maintainability predictor ele-
ments also known as software metrices. Taking these two
axis as parameters they chose no.of metrices that they were
interested in and they chose the pattern and calculated he
average of the metrices scores on the design patterns. They
summed up the grand total of the metric scores and pattern
with the higher no.of least metric value or he metric score
with the least sum of the metrics is chosen as the best de-
sign pattern.

But no tabular explanation of the tool was given in the ear-
lier study so I have explained the maintainability predictor
tool or MPT with a rough explanation of carrying outthe

calculation of the metric scores and thsts too on a most eas-
ier and abstract level. I have given the explanation which
can be brought into consideration for engineering students
who are just mere beginners.

4.1 LIST OF THE MAINTAINABILITY PREDICTORS

 Metrics descriptions
 DIT - Depth of the inheritance tree (=inheritance level

number of the class, 0 for the root class).
 MPC - Message-passing couple (=number of send

statements defined in the class).
 NOC -Number of children (=number of direct sub-

classes that the class has).
 RFC -Response for a class (=total number of local

methods and the number of methods called by local
methods in the class).

 DAC - Data abstraction coupling (=number of ab-
stract data types defined in the class).

 WMPC - Weighted method per class (=sum of McCa-
be‟s cyclomatic complexity of all local methods in the
class).

 NOM -Number of methods (=number of local
methods in the class).

 SIZE1 -Lines of code (=number of semicolons in the
class).

 SIZE2 -Number of properties (=total number of at-
tributes and the number of local methods in the class).

4.2 PROPOSED TOOL

 The decision support tool has been designed in to

choose any three design patterns from creational pat-
tern of (gof), it calculates metrics scores of each solu-
tion based on the system size.

 then it presents where a design solution is getting bet-
ter than another with respect to several quality attrib-
utes from list of maintainability predictors or metrics.

 The software design with maximum number of min-
imum metric scores is judged as a software design
which increases the maintainability of codes.

 The proposed tool aims to help the designer/developer to
choose the appropriate design pattern that produces
more maintainable system. The input of the tool is the
pattern under investigation and the estimated pattern size
which is number of refined abstractions classes (n) and
number of concrete implementers classes (m). The func-
tional architecture of proposed tool is shown in figure 1,
the user selects the pattern he wants to examine then se-
lects the metrics he is interested in and finally defines
the (n) and (m) for the pattern.

 The tool retrieves all patterns that describe equivalent
functionality from a repository of patterns, and then calcu-
lates the mathematic equations of selected metrics for each
equivalent pattern. The tool displays the results in two
phases: first phase indicates the average metric scores for
each pattern in the given range of (n) and (m), and the se-
cond phase determines which pattern produces „best‟ re-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 531
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

sults i.e. has the higher count of lower metric values then
consider as more maintainable.

.

4.3 EXPLANATION
Suppose we have taken three design patterns who have the

value of the concrete implementer classes and no.of refined
abstract classes as pattern1(1,5), pattern2(0,6) and pattern3(0,4)
and the metrics be chosen as metric 1, metric 2, and metric 3 so
the table that would be drawn for the same will be like this for a
given module-

 TABLE 1
 EXPLANATION OF THE TOOL IN TABULAR FORM

Patterns(n,m) Pattern

1(1,5)
Pattern
2(0,6)

Pattern
3(0,4)

Metric 1 1 1 2
Metric 2 1 0 1
Metric 3 1 0 0

On adding the total of these metrics value, the total of pattern 1
comes out to be 3, the total of pattern 2 comes out to be 2 and
the grand total of pattern 3 comes out to be 3. So the least sum
value of the three patterns included is of pattern 2 so pattern 2 is
judged as the most maintainable pattern.

5 VALIDATION OF THE TOOL

The survey was conducted online for the engineering stu-
dents who were asked to take the simpler design patterns that
are given above and apply the MPT on the metrics according

to their choice. The chosen design patterns were abstract fac-
tory patern and the factory pattern.The result that came out
was that factory pattern came out to be more maintainable.

The total students involoved in he survey were 50 and out of
those students 20 said that the tool is useful 15 students said
that tool the working is feasible but specifications and modifi-
cations can be done over the tool, 10 students said the tool lack
the logic and 5 said they couldn’t understand the working of
the tool.

6 CONCLUSION

The authors proposed a solution to evaluate the effect of
design patterns on software maintainability. This solution
is simulated by a tool that measures the maintainability of
each pattern by some relevant metrics with regard the sys-
tem size.

The future work on the maintainability is required as for

the design patterns on applying the system lines of codes
as metrics creates ambiguity and the tool should accept the
system size automatically and on the basis of rest of the
metrics the tool can carry out to take the same calculations
as it is supposed to carry out. This will enhance the specifi-
cations of the design patterns and the accuracy of the tool
will be enhanced automatically.

7 REFERENCES
[1] C. Zhang and D. Budgen, "What Do We Know about the Effective-

ness of Software Design Patterns?," IEEE Transactions on Software
Engineering, vol. 38, no. 5, Sep./Oct. 2012, pp. 1213- 1231.

[2] E. Gamma, R. Helms, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, Reading, MA, 1995.

[3] B. Nadia, A. Kouas and H. Ben-Abdallah, "A design pattern rec-
ommendation approach", CORD Conference Proceedings, pp. 590-
593, 2011.

[4] A. Ampatzoglou, G. Frantzeskou and I. Stamelos, "A methodology
to assess the impact of design patterns on software quality," Infor-
mation and Software Technology, Elsevier, vol. 54, no. 4, April
2012, pp. 331–346.

[5] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler and L.G. Votta , "A
controlled experiment in maintenance: comparing design patterns to
simpler solutions," IEEE Transactions on Software Engineering,
vol. 27, no. 12, Dec. 2001, pp. 1134-1144.

TABLE 2
DESIGN PATTERN UNDER CONSIDERATION

 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 532
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[6] L. Prechelt and M. Liesenberg, "Design Patterns in Software
Maintenance: An Experiment Replication at Freie University at
Berlin," Second International Workshop on Replication in Empiri-
cal Software Engineering Research (RESER), Sept. 2011 pp.1-6,
21. DOI 10.1109/ RESER.2011.12

[7] N. Juristo, S. Vegas, "Design Patterns in Software Maintenance:
An Experiment Replication at UPM - Experiences with the
RESER'11 Joint Replication Project," Second International Work-
shop on Replication in Empirical Software Engineering Research
(RESER), Sept. 2011, pp.7-14, 21. DOI 10.1109/RESER.2011.8

[8] A. Nanthaamornphong and J. C. Carver, "Design Patterns in Soft-
ware Maintenance: An Experiment Replication at University of Al-
abama," Second International Workshop on Replication in Empiri-
cal Software Engineering Research (RESER), Sept. 2011, pp.15-24,
21-21. DOI 10.1109/RESER.2011.11

[9] J.L. Krein, L. J. Pratt, A.B. Swenson, A.C. MacLean, C. D. Knut-
son, and D.L. Eggett , "Design Patterns in Software Maintenance:
An Experiment Replication at Brigham Young University," Second
International Workshop on Replication in Empirical Software En-
gineering Research (RESER), Sept. 2011, pp.25-34, 21-21. DOI
10.1109/ RESER.2011.10

Ashutosh kumar Srivastava is currently pursuing Master degree course
in Computer Applications from University of Allahabad, India.
Mobile No- 08382069571
Email id-developerashutosh03@gmail.com

 IJSER

http://www.ijser.org/

	1 Introduction
	2 related work
	The study of design pattern has been subjected to empirical evaluation. Many research has been carried out to predict the ways which can detect the correct design pattern which can actually enhance the maintainability of codes but no reaseach has bee...
	Its quite impossible also to find out a tool which can actually check the performance of the architectutral patterns on codes as different scenarios are there in the wordly problems and each one of them needs to be handled differently, so most...

	3 problem statement
	4 Proposed solution
	4.3 EXPLANATION
	6 CONCLUSION

	7 References

